Phase space methods: independence of subspaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Veroneseans, power subspaces and independence

Results are proved indicating that the Veronese map vd often increases independence of both sets of points and sets of subspaces. For example, any d + 1 Veronesean points of degree d are independent. Similarly, the dth power map on the space of linear forms of a polynomial algebra also often increases independence of both sets of points and sets of subspaces. These ideas produce d+ 1-independen...

متن کامل

Phase-Space Methods for Fermions

Phase-space representations first arose from the attempt to describe quantum mechanics in terms of distributions over classical variables [1]. For example, Wigner introduced a function of phase-space variables W(x, p) that would classically correspond to a joint-probability distribution: an integration over x gives the marginal distribution for p and vice-versa. However in quantum mechanics, su...

متن کامل

Reading Neural Encodings using Phase Space Methods

Environmental signals sensed by nervous systems are often represented in spike trains carried from sensory neurons to higher neural functions where decisions and functional actions occur. Information about the environmental stimulus is contained (encoded) in the train of spikes. We show how to “read” the encoding using state space methods of nonlinear dynamics. We create a mapping from spike si...

متن کامل

Ela Some Subspaces of the Projective Space

Let V be a 2m-dimensional vector space over a field F (m ≥ 2) and let k ∈ {1, . . . , 2m − 1}. Let A2m−1,k denote the Grassmannian of the (k − 1)-dimensional subspaces of PG(V ) and let egr denote the Grassmann embedding of A2m−1,k into PG( ∧k V ). Let S be a regular spread of PG(V ) and let XS denote the set of all (k − 1)-dimensional subspaces of PG(V ) which contain at least one line of S. T...

متن کامل

Large and Small Subspaces of Hilbert Space

For example, Theorem 3 says that if V is a closed subspace of f2 and if V CQp for some p < 2, then V is finite-dimensional . On the other hand, the corollary to Theorem 4 states that there exist infinite-dimensional subspaces V of f 2 none of whose nonzero elements belongs to any f p -space (p < 2) . [For L2(0, 1) the results are somewhat different: (1) if V is a closed subspace of L 2(0, 1) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2019

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1194/1/012111